列一元二次方程解决动态类问题
例1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.

【解答】
解:(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,
则PB=(16﹣3x)cm,QC=2xcm,

根据梯形的面积公式得(16﹣3x+2x)×6=33,
解之得x=5
(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
作QE⊥AB,垂足为E,
则QE=AD=6,PQ=10,
∵PA=3t,CQ=BE=2t,
∴PE=AB﹣AP﹣BE=|16﹣5t|,
由勾股定理,得(16﹣5t)2+62=102,
解得t1=4.8,t2=1.6
答:(1)P、Q两点从出发开始到5秒时四边形PBCQ的面积为33cm2;
(2)从出发到1.6秒或4.8秒时,点P和点Q的距离是10cm.

例2、等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D。设P点运动时间为t,△PCQ的面积为S。
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论。

【解答】
解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t

∴
当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10

∴(4分)

(2)∵S△ABC=(5分)

∴当t<10秒时,S△PCQ=
整理得t2﹣10t+100=0无解(6分)

当t>10秒时,S△PCQ=

整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)

∴当点P运动秒时,S△PCQ=S△ABC(8分)
(3)当点P、Q运动时,线段DE的长度不会改变.
证明:过Q作QM⊥AC,交直线AC于点M
易证△APE≌△QCM,

∴AE=PE=CM=QM=t,
∴四边形PEQM是平行四边形,且DE是对角线EM的一半.

又∵EM=AC=10

∴DE=5
∴当点P、Q运动时,线段DE的长度不会改变.

同理,当点P在点B右侧时,DE=5
综上所述,当点P、Q运动时,线段DE的长度不会改变.

版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
