例题5:如图,在ABCD中,点E是BC上的一点,连接DE,在DE上取一点F使得∠AFE=∠ADC.若DE=AD,求证:DF=CE.

分析:根据平行四边形的性质得到∠C+∠B=180°,∠ADF=∠DEC,根据题意得到∠AFD=∠C,根据全等三角形的判定和性质定理证明即可
证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠ADC,∴∠AFD=∠C,又∵AD=DE,∴△AFD≌△DCE(AAS),∴DF=CE.(4)利用判定定理证明四边形为平行四边形
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
