一.了解二元一次方程组及其解的含义;
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 例如,
二.会检验一组数是不是某个二元一次方程组的解;
检验一组数是否是二元一次方程组的解时,一定要将这一组数代入方程组中的每一个方程,看是否 满足每一个方程,只有这组数满足方程组中的所有方程时,该组数才是原方程组的解,否则不是。
三.会用代入法和加减法解二元一次方程组,了解代入消元法和加减消元法的基本思想;
代入法消元:
1.代入消元法是解方程组的两种基本方法之一。代入消元法就是把方程组其中一个方程的某个未知数 用含另一个未知数的代数式表示,然后代入另一个方程,消去一个未知数,将二元一次方程组转化为一元一次方程来解。这种解二元一次方程组的方法叫代入消元法,简称代入法。
2.用代入法解二元一次方程组的一般步骤: (1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示;#FormatImgID_2# (2)将变形后的这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;
(3)解这个一元一次方程,求出一个未知数的值; (4)将求得的这个未知数的值代入变形后的关系式中,求出另一个未知数的值;#FormatImgID_3#
加减法消元:
1.加减消元法是解二元一次方程组的基本方法之一,加减消元法是通过将两个方程相加(或相减)消去 一个未知数,将二元一次方程组转化为一元一次方程来解,这种解法叫做加减消元法,简称加减法。 2.用加减法解二元一次方程组的一般步骤: (1)方程组中的两个方程,如果同一个未知数的系数互为相反数或者相等,就可用适当的数去乘一 个方程或两个方程的两边,使两个方程中的某一个未知数的系数互为相反数或相等;





(2)把两个方程的两边分别相加减(相同时相减,相反时相加),消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得其中一个未知数的值; (4)把所求得的这个未知数的值代入到原方程组中系数比较简单的一个方程,求出另一个未知数的值;
4.能够根据题目特点熟练选用代入法或加减法解二元一次方程组; 5.能借助二元一次方程组解决一些实际问题,使用代数方法去反应现实生活中的等量关系,体会代数 方法的优越性.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
