​2023年初中数学:利用对称性质证明几何题

层次:所属学校:全国 科目:数学 2023-02-02 10:46:43 数学知识点 轴对称

首先,我们来看看例1、如下图所示:

图片

很多学生拿到本题时,基本上都能做出来,而且都是用同一个方法——通过两个三角形全等,得出对应线段相等,其过程如下图所示:

图片

这样的做法是通法,但是我们只要多挖掘题目的意思,就能得到更有用的信息:平行四边形是中心对称图形,利用中心对称图形的性质,便能得到更简单明了的方法,如下图所示:

图片

当然了,这样的做法必须要求我们平时上课时,要对对称性质的重视,在实际教学中,很多学生只会利用其画图,而忽视也可以利用它解题。

再来看看例2、如下图所示:

图片

这道题相对来说难一点了,不过很多学生还是能够用这样的方法做出来:通过作辅助线,找到两个三角形全等,得出对应角相等,再进行等量代换,即可证明出来结论了,步骤如下图所示:

图片

对本次,我们也可以换一种思维去思考:整个图形是一个梯形,可以根据中心对称图形得出另一个和它全等的梯形,而这两个梯形恰好组成一个平行四边形,利用已知条件证得其为菱形,得出最后结论,如下图所示:

图片

此题的难点就是:我们是否能够找到某一点,以它为对称中心,构造中心对称图形。

轴对称和中心对称在初中数学中,占比不高,而且很简单,往往就是因为这样的原因,我们在解决几何图形时,很少能够重视它,运用它去解题。更多的是模范老师的解法,不断地进行解题训练,从而造成思维定势,不利于数学几何的学习。

最后,留一道中考题,读者们可以先用通用解法,再利用对称性质来解,看看哪个方法对你来说更容易理解,题目如下图所示:

图片

最后,以上都是本人如何利用对称性质解题的一些浅陋之见,耐本人能力眼界有限,有不当之处,还望读者不吝赐教。

版权声明

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系本站我们将配合处理!

分享: