在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______

所属学校:学历教育 科目:高中数学 2024-01-14 16:32:40 高中数学

在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______

【答案】

1

【解析】

∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;

又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,

∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.

设圆心C(4,0)到直线y=kx﹣2的距离为d,

则d=1≤2,即3k2﹣4k≤0,

∴0≤k≤2

∴k的最大值是2

所以答案是:2

版权声明

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系本站我们将配合处理!

分享: