如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论
如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①四边形CEDF有可能成为正方形;
②△DFE是等腰直角三角形;
③四边形CEDF的面积是定值;
④点C到线段EF的最大距离为
.
其中正确的结论是( )

A.①④ B.②③ C.①②④ D.①②③④
【答案】D
【解析】①当E、F分别为AC、BC中点时,四边形CDFE是正方形,故此选项正确;
②①连接CD;

∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵在△ADE和△CDF中,

∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.故此选项正确;
③∵△ADE≌△CDF,
∴S△ADE=S△CDF.
∵S四边形CEDF=S△CED+S△CFD,
∴S四边形CEDF=S△CED+S△AED,
∴S四边形CEDF=S△ADC.
∵S△ADC=
S△ABC=4.
∴四边形CEDF的面积是定值4,故本选项正确;
④④△DEF是等腰直角三角形,
DE=EF,
当EF∥AB时,∵AE=CF,
∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,
∴EF取最小值=
=2
,
∵CE=CF=2,
∴此时点C到线段EF的最大距离为
EF=
.故此选项正确.
故选D.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
上一篇 : 根据宪法和法律,下列选项哪些不符合法律规定?
下一篇 :返回列表
