用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证明当n=k+1时的情况,只需展开( )
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证明当n=k+1时的情况,只需展开( )
A. (k+3)3
B. (k+2)3
C. (k+1)3
D. (k+1)3+(k+2)3
【答案】A
【解析】假设当n=k时,原式能被9整除,
即k3+(k+1)3+(k+2)3能被9整除.
当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.
版权声明
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系本站我们将配合处理!
