用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证明当n=k+1时的情况,只需展开( )

所属学校:学历教育 科目:高中数学 2024-08-07 08:50:17 高中数学

用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证明当n=k+1时的情况,只需展开( )

A. (k+3)3

B. (k+2)3

C. (k+1)3

D. (k+1)3+(k+2)3

【答案】

A

【解析】

假设当n=k时,原式能被9整除,

即k3+(k+1)3+(k+2)3能被9整除.

当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k+3)3展开,让其出现k3即可.

版权声明

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系本站我们将配合处理!

下一篇 :返回列表

分享: